

Il ruolo dell'imaging molecolare nell'era della immunoterapia

Laura Evangelista MD, PhD

Nuclear Medicine Unit

Veneto Institute of Oncology IOV – IRCCS, Padua, Italy

Roma, 22 Febbraio 2019

Issues

- 1. Background
- 2. Needs and priorities
- 3. Evidences
 - 1. Literature
 - 2. Clinical impact
- 4. Comparative data (vs. standards)
- 5. Practical aspects
 - 1. Patient preparation
 - 2. Interpretation of the images

Issues

1. Background

2. Needs and priorities

3. Evidences

- 1. Literature
- 2. Clinical impact
- 4. Comparative data (vs. standards)
- 5. Practical aspects
 - 1. Patient preparation
 - 2. Interpretation of the images

Immunotherapy

Fig. 1 Immune suppressive mechanisms in the tumor microenvironment. The impact of immune checkpoints and the mutual interactions of the principal components of the immune system plays a crucial pro-tumorigenic role. APC Antigen-presenting cell; MDSC Myeloid-derived suppressor cells; NK Natural Killer; T_H2 T-help-

ONCOLOGICO VENETO histocompatibility complex 1; PD-1 programmed cell death 1; PD-L1 programmed cell death ligand 1; PD-L2 programmed cell death ligand 2; CTLA-4 cytotoxic T-lymphocyte antigen 4; IL-10 interleukin 10; IFN- γ interferon gamma; TGF- β transforming growth factor beta; COX2 Cyclooxygenase 2; PGE2 Prostaglandin E2; ARG1 arginase 1; iNOS Inducible nitric oxide synthase; ROS reactive oxygen species

Mycloid-derived suppressor cells; NK Natural Killer, I_{H2} 1-help-T_{reg} T-regulatory; TCR T-cell receptor; MHC1 major

Eur J Nucl Med Mol Imaging. 2017; 44:2310–2325

Patterns or response to immunotherapeutic agents differ from those to other targeted therapies.

- 1. Early and delayed response
- 2. Pseudoprogression (15% of cases)
- 3. Hyperprogression (<5%)

Eur J Nucl Med Mol Imaging. 2019;46:238-250

Evolution of cancer

What about FDG PET/CT?

- FDG is trapped in tissues with high glicolytic activity
- FDG is not specific
- Low specificity
- High false positive findings
- Time between therapy and imaging is essential!

ONCOLOGIC VENETO

A: before Th. B: 6-weeks after Th.

Diffuse pseudoprogression after Nivolumab in a NSCLC patient

Eur J Nucl Med Mol Imaging. 2019;46:238-250

Hyperprogression at FDG PET

MDM2 family amplification MDM mDM p53 MDM MDM p53 inactivated Cell survival Proliferation The predictors of hyperprogression Previous irradiation

Dynamic adaption

In patients with late progression of disease, one should consider continuing immunothera py, because the immune system may adapt again control the tumor

ISTITUTO ONCOLOGICO VENETO

Clin Nucl Med 2018; 43:118

PET criteria for the definition of response to therapy

Table 2Su	ummary of the principal morphological and fur		Guidelines for the Evaluation of Immune Therapy Activity				
Category	Metabolic response	Morphological response			Tumors: Immune-Related Response Criteria Jedd D. Wolchok, ¹ Axel Hoos, ² Steven D'Dey, ³ Jeffrey S. Weber, ⁴ Ornid Hamid, ³ Celeste Michele Malo, ⁶ Michael Binder, ⁷ Oliver Bohnsack, ⁶ Geoffrey Nichol, ⁸ Rachel Humphrey, ² and F. Stephen Hodil ¹⁰		
	EORTC 1999	PERCIST	RECIST 1.1	irRC	irRE	CIST	
Measurable lesions	the most FDG uptake lesions by SUVs normalized by body surface area	minimum tumor SUL 1.5 times the mean SUL of the liver	10 mm at CT (longest diameter, except in lymph nodes)	5 mm × 5 mm	not c	change from RECIST 1.1	
New lesions	as progressive disease	as progressive disease	as progressive disease	Does not constitute progressive disease in itself	Doe: di	s not constitute progressive sease in itself	
Number of lesions	not specified	changes in the sum of up to 5 lesions as secondary measure to assess response	up to 5, maximum 2 per organ	up to 5 cutaneous lesions and 10 visceral lesions (no more than 5 per organ)	not c	change from RECIST 1.1	
Complete response	complete resolution of [18F]-FDG uptake	disappearance of all metabolically active tumors	disappearance of all target axis of target lymph no lesions	t lesions reduction in short odes to <10 mm no new	total ar ev	remission of all target, nontarget, id new lesions for two consecutive valuations at least 4 weeks apart	
Partial Response	reduction of a minimum of $15\% \pm 25\%$ in tumor SUV after 1 cycle of chemotherapy, and >25% after more than one treatment cycle	0.8-unit (>30%) decline in SUL peak between the most intense lesion before treatment and the most intense lesion after treatment	decrease in target lesion diameter sum >30%	decrease of at least 50% of baseline (confirmed by a 4 weeks)	f the t a cons	umor burden compared to the secutive scan after no less than	
Stable disease	increase in SUV of less than 25% or a decrease of less than 15%	does not meet other criteria	does not meet other criter	ia	an ir sn (n fre	acrease less than 25% from nallest recorded tumor burden adir) or a decrease less than 50% om baseline	
Progression disease	increase in tumor FDG uptake >25%, increase of the maximum tumor >20%, new metastases	increase (>30%) in SUL peak or the appearance of a new metabolically active lesion	increase in target lesion diameter sum >20% and at least 5 mm or new lesions	At least 25% increase in tu consecutive observation	imor b is at le	urden compared with nadir in two ast 4 weeks apart	

Cancer Therapy: Clinical

Notes: EORTC = European Organization for Research and Treatment of Cancer; PERCIST = PET) Response Criteria in Solid Tumors; RECIST = Response Evaluation Criteria In Solid Tumors; irRC = Immune-Related Response Criteria; irRECIST = Immune-Related RECIST

Issues

1. Background

2. Needs and priorities

3. Evidences

- 1. Literature
- 2. Clinical impact
- 4. Comparative data (vs. standards)
- 5. Practical aspects
 - 1. Patient preparation
 - 2. Interpretation of the images

Needs

Priorities

- Is there any response to immunotherapy?
- How can differentiate between pseudoprogression and hyperprogression?
- May I predict the response to immunotherapy, by selecting appropriate patients?
- May I anticipate the development of immune related side effects?

- Selection of patients who may benefit from immunotherapy
- An early prediction of response to immunotherapy (indirect on costs)
- Data about follow-up after stopping immunotherapy
- D.D. between pseudoprogression and hyperprogression

Issues

- 1. Background
- 2. Needs and priorities

3. Evidences

- 1. Literature
- 2. Clinical impact
- 4. Comparative data (vs. standards)
- 5. Practical aspects
 - 1. Patient preparation
 - 2. Interpretation of the images

Clinical Evidences

Reference	Study type	Number of patients	Tumour	Treatment	Response criteria	Results	
[20]	Prospective	22	Melanoma	Ipilimumab	EORTC after two cycles of treatment (early) and at the end of treatment after four cycles (late)	Early response evaluation after (two cycles) is predictive of final treatment outcome in patients with PMD and SMD	182 patients with melanoma
[26]	Prospective	27	Melanoma	20 pembrolizumab, 7 nivolumab	Visual analysis (qualitative visual inspection, positive when FDG uptake greater than background activity or hepatic uptake; Deauville score)	43% of patients who had residual disease by CT criteria, either PR or SD, were FDG-negative	
[36]	Prospective	31	Melanoma	Ipilimumab	Fractal and multifractal analysis before and after two and after four cycles of treatment	Operator-independent method with a correct classification rate of 83.3%	51 patients with
[23]	Prospective	20	Melanoma	16 Ipilimumab, 1 nivolumab, 3 BMS-936559	RECIST 1.1 and PERCIST at early (4 weeks) and late assessment (4 months)	Combined anatomical and functional data at 21–28 days (PECRIT) criteria predicted response with 100% sensitivity, 93% specificity and 95% accuracy. Introduction of clinical	
[22]	Prospective	24	NSCLC	Nivolumab	RECIST 1.1 versus PERCIST; additional semiquantitative analyses (SUVmax, MTV, TLG)	benefit in response criteria Metabolic response on PET (especially TLG) associated with therapeutic response and survival at 1 month after nivolumab	EORTC in 2 studiesVisual and
[28]	Prospective	27	NSCLC	23 nivolumab, 4 pembrolizumab	Baseline semiquantitative analysis	SUVmax ≤17.1 (sensitivity 88.9%) or a SUVmean ≤8.3 (sensitivity 100%) identified fast progression after 8 weeks of therapy	semiquantitative analysis in 2
[24]	Prospective enrolment, retrospective PET analysis	41	Melanoma	Ipilimumab	RECIST and appearance of new FDG-avid lesions (PERCIMT); patients were dichotomized into those with and those without	A cut-off of four newly emerged FDG-avid lesions on posttreatment PET/CT gave reliable indication of treatment failure	studiesPERCIST and new
[25]	Prospective	41	Melanoma	Ipilimumab	EORTC and PERCIMT after two cycles of immunotherapy	PERCIMT to interim PET/CT provides a more sensitive predictor of final response than EORTC criteria	in 3 studies

Prediction of response/selection of patients 1

1074

25

Radiomics

Imaging and metabolic data, analysed visually, semiquantitavely or with dedicated algorithms are pieces of puzzle. Therefore, new radiomic information would add precious information for this end-point.

Eur J Nucl Med Mol Imaging (2018) 45:1072-1075

PD-L1 expression and FDG PET

ONCOLOGICO VENETO

Histology	Ν	SUVmax according to PD-L1 expression, mean value (range)					
		Negative	Positive	P value			
Overall ¹	579	4.69 (0–30.6)	9.89 (0.8–31.05)	<0.0001			
ADC	441	3.84 (0–30.4)	7.81 (0.8–28.3)	<0.0001			
SCC	103	9.18 (1.5–30.6)	12.60 (2.1–31.05)	0.0044			
LCC	4	-	12.76 (4.81–21.4)	-			
SCLC	16	7.40 (2.42–14.7)	3.4	0.3225			
LCNEC	15	8.88 (2.8–14.57)	10.91 (6.1–14.54)	0.4491			

- Glucose metabolism was generally higher in patients with PD-L1 protein expression than those without PD-L1.
- Smoking, the presence of pleural invasion, and high SUVmax in PET/CT were predictors of PD-L1 protein expression in patients with lung cancer, especially NSCLC.

Prediction of response/selection of patients 2

ISTITUTO ONCOLOGICO VENETO

Evangelista et al. Submitted to Nucl Med Comm

Evaluation of response to immunotherapy

- 20 patients with melanoma
- Ipilumab or nivolumab
- Scan intervals: before (SCAN-1), days 21–28 (SCAN-2), 4 mo (SCAN-3)

The response to therapy: old vs immuno-criteria

Other than FDG -alternative tracers

preclinical evidence

Clin Transl Imaging 2018; 6:429-39

Other than FDG -alternative tracers *clinical evidence*

J Nucl Med 2019; in press

Clinical evidences-summary

References.(1) Eshghi N, 2018; (2) Grizzi F, 2018; (3) Evangelista L, 2019; (4) Sachpekidis C, 2015; (5) Kong BY, 2016; (6) Breki CM, 2016; (7) Cho SY, 2017; (8) Anwar H, 2018; (9) Sachpekidis C, 2018; (10) Kaira K, 2018; (11) Vaz SC, 2018; (12) Xing Y, 2019.

Issues

- 1. Background
- 2. Needs and priorities
- 3. Evidences
 - 1. Literature
 - 2. Clinical impact

4. Comparative data (vs. standards)

- 5. Practical aspects
 - 1. Patient preparation
 - 2. Interpretation of the images

Comparison between GS and PET/CT

VENETC

24 pts; FDG PET/CT before and 1 month after nivolumab

RECIST1.1 vs PERCIST

CI				Univariate analysis		Multivariate	e analysis		• PMD (n=11)
00-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	L			MST (months)	<i>p</i> -value	HR	95%CI	<i>p</i> -value	Non-PMD (n=13)
60-		Overall survival	1 (OS)						
10 ¹⁰ 10		Gender	Male/Female	17.0 / 7.7	0.002	1.692	0.886-3.402	0.109	
80- 20-	<i>ρ</i> =0.9	PS	0 or 1 / 2	17.0 / 5.1	0.348				
		Stage	III / IV	10.6 /17.0	0.266	1.269	0.319-6.247	0.741	300 400
Ö	100	Histology	Adeno / SQC	12.1 / NR	0.105				iys)
		TLG	PMR/non-PMR	NR / 10.6	0.006	2.461	0.269-7.192	0.012	
	ax	Progression-free	e survival (PFS)						• PMD (n=12)
_ញ ៃ	h	Gender	Male/Female	6.7 / 1.7	0.006	1.640	0.896-3.002	0.106	 Non-PMD (n=12)
H 80-	λ.	PS	0 or 1 / 2	3.5 / 3.1	0.228				
60-	٦,	Stage	III / IV	3.5 / 3.5	0.717	2.859	0.856-11.48	0.089	
10- ut	ĥ	Histology	Adeno / SQC	2.7 / NR	0.069				
erce 50-	Ĺ	TLG	PMR/non-PMR	NR / 2.1	< 0.001	3.624	1.728-9.557	< 0.001	
	100	PS, performance median survival	e status; Adeno, adenocarcino l time; HR, hazard ratio; 95%	oma; SQC, squamous cell ca CI, 95% confidential interv	arcinoma; <i>TLG</i> , total al; <i>NR</i> , not reached	lesion glycolysis;	PMR, partial metabolic re	esponse; <i>MST</i> ,	300 400 ys)

Eur J Nucl Med Mol Imaging (2018) 45:56–66

Comparison between GS and PET/CT-The FIR trial

More patients demonstrated progressive disease (52 versus 31) by early PET with correspondingly fewer having stable disease (28 versus 55) compared with CT RECIST.

In patients with stable disease by CT-based RECIST v1.1 at Week 6, metabolic response further informs outcome.

Issues

- 1. Background
- 2. Needs and priorities
- 3. Evidences
 - 1. Literature
 - 2. Clinical impact
- 4. Comparative data (vs. standards)
- 5. Practical aspects
 - 1. Patient preparation
 - 2. Interpretation of the images

Patient preparation-patient medical examination

- Type of immune modulator received (anti-CTLA or anti-PD1 or association in the clinical trials).
- Number of cycles received and the date of the last injection.
- Clinical symptoms associated with immune related side effects*.
- For diabetic patients, check whether drugs likely to mimic colities have been withdrawn or not.

*Immune related side effects

ONCOLOGIC VENETO

Related adverse events

Pancreatitis

Pneumonitis

Gastrointestinal inflammation

Stomatitis

Colitis

Unrelated adverse events

Bacteremia

Enchephalitis

GVHD

Infection

Pneumonia mycoplasma

Skin infection

Small intestine infection

Interpretation of images

- To evaluate the response in the target lesion(s)
- To compute (if possibile) and report MATV and TLG
- In case of new lesions:
 - Evaluate the site of appearance
 - Check whether new lesions may be related to immune-related side effects (before to classify the patient as a PMD)

Eur J Nucl Med Mol Imaging. 2019;46:238-250

Colitis

The appearance of diffuse colonic uptake reported as possible colitis (no digestive symptoms). The progression seen after two cycles was considered to represent pseudoprogression

Sarcoidosis

Eur J Nucl Med Mol Imaging. 2019;46:238-250

Multiple immune-related side effects

Eur J Nucl Med Mol Imaging. 2019;46:238-250

18F-FDG PET/CT Can Predict Development of Thyroiditis due to Immunotherapy for Lung Cancer

	Thyroid irAE (n=6)	No Thyroid irAE (n=12)	
	Mean (SD)	Mean (SD)	Difference (P-Value)
SUV mean	2.41 (1.04)	1.64 (0.44)	0.77 (0.04)
SUV max	2.96 (1.28)	2.00 (0.5)	0.96 (0.038)
TLG	1.96 (1.05)	1.00 (0.47)	0.96 (0.016)

Since lung cancer patients treated with immunotherapy are staged and followed with ¹⁸F-FDG PET/CT, standard of care use of this imaging could predict the development of the irAE thyroiditis before laboratory testing. Thus, oncologists and patients can be more vigilant for signs or symptoms of early hypothyroidism and initiate thyroid hormone replacement optimally. Further work is required to establish more strongly the predictive power of finding increased ¹⁸F-

J Nucl Med 2018; in press

Conclusions

- More clinical trials are necessary in order to identify the role of FDG PET/CT in patients candidates to or undergoing immunotherapy
- Need for standardization of criteria and definition of optimal time of realization of the images (during and after immunotherapy)
- Potential benefit of PD1 / PD-L1 theranostic imaging for selecting patients (waiting for the humans studies)

Thanks

laura.evangelista@iov.veneto.it

