

**Regional Center for Cancer Biomarkers** 



# State of the art and trends of circulating cancer biomarkers: a paradigmatic example

### Massimo Gion, MD

SS. Giovanni e Paolo Hospital, Department of Clinical Pathology, LHA AULSS3, Venice, Italy



#### Where we are

- A limited number of markers are recommended in a limited number of clinical scenarios for the routine use. They were discovered over 30 years ago and are associated to tumor bulk
- Tissue-specific markers (i.e. PSA, Thyroglobulin, some hormones, ... )
- Onco-fetal antigens (i.e. CEA, AFP, ...)
- Carbohydrate antigens (i.e. CA125, CA19-9, CA15.3. ...)

### Where are we going

#### **Novel technologies**

- Genomics
- Proteomics
- Multiplexing
- ....

#### **Novel biomarker classes**

- Circulating nucleic acids
- Mechanism related biomarkers

#### **Novel biological matrixes**

- Exosoms
- Saliva
- •

 The challenge with biomarkers is to translate a constantly increasing complexity (biological, analytical, computational,...) into tools and decision criteria realistically transferable in a reasonable time frame to the clinical practice.

#### The pipeline of translational research on biomarkers can be described as a continuum, from ...

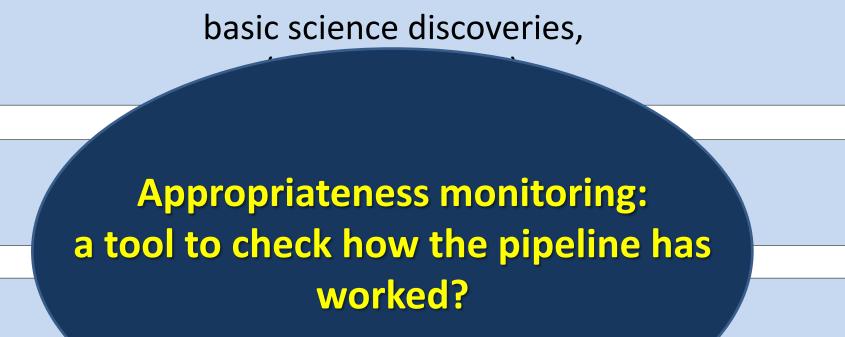


analytic validation,

clinical validation,

assessment of clinical utility

#### The pipeline of translational research on biomarkers can be described as a continuum, from ...


basic science discoveries, (primary studies)

> analytic validation, (primary studies)

clinical validation,

(primary studies, systematic reviews, meta-analyses)

assessment of clinical utility (clinical practice guidelines) The pipeline of translational research on biomarkers can be described as a continuum, from ...



vses)

assessment c clinical utility (clinical practice guidelines)

prima

### Appropriateness monitoring: a tool to check how the "pipeline" has worked?

An effective research flow should ultimately lead to an appropriate implementation of a given intervention in the clinical practice.

Circulating tumor markers are a paradigmatic example to test how results of research have been eventually translated in clinical practice.

### Traditional circulating tumor markers: a valuable template for novel biomarkers?

- Since their first discovery, traditional circulating tumor markers (CEA, AFP, CA125, PSA, ...) have been evaluated in thousands of subjects and used for clinical decisions in hundred of thousands of patients, using fully standardized assay methods supervised through established quality assurance programs.
- Can they be the template for the translational research of novel biomarkers into the clinical practice ?

How appropriateness of tumor marker ordering can be appraised ?

### Indicators are the basic tool to monitor appropriateness

Are there established indicators to monitor appropriateness of laboratory test ordering?

The general framework of appropriateness appraisal of laboratory testing

### Three meta-analyses are available

#### **Toward Optimal Laboratory Use 1**

# Do We Know What Inappropriate Laboratory Utilization Is?

#### A Systematic Review of Laboratory Clinical Audits

Carl van Walraven, MD, MSc, FRCPC; C. David Naylor, MD, DPhil, FRCPC



#### OPEN O ACCESS Freely available online

## The Landscape of Inappropriate Laboratory Testing: A 15-Year Meta-Analysis

#### Ming Zhi<sup>1</sup>, Eric L. Ding<sup>1,2,3</sup>, Jesse Theisen-Toupal<sup>1,4</sup>, Julia Whelan<sup>1,5</sup>, Ramy Arnaout<sup>1,6,7</sup>\*

1 Harvard Medical School, Boston, Massachusetts, United States of America, 2 Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America, 3 Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America, 4 Division of General Medicine and Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America, 5 Countway Library of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America, 6 Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America, 7 Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United

**PLOS** ONE

# **BMJ Open** Overtesting and undertesting in primary care: a systematic review and meta-analysis

Jack W O'Sullivan,<sup>1</sup> Ali Albasri,<sup>1</sup> Brian D Nicholson,<sup>1</sup> Rafael Perera,<sup>1</sup> Jeffrey K Aronson,<sup>1</sup> Nia Roberts,<sup>2</sup> Carl Heneghan<sup>1</sup>

<sup>1</sup>Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Science, University of Oxford, Oxford, UK, <sup>2</sup>Bodleian Health Care Libraries, University of Oxford, Oxford, UK

2018;8e018557. doi:10.1136/bmjopen-2017-018557

Focused on several diagnostic tests. Only 11,165 IVD orders were examined

## Can general indications (i.e. indicators) be extracted from available meta-analysis ?

- The available meta-analysis examined for appropriateness 11,165 + 13,000 + 1,605,095 IVD test orders, ...
  - spread over 10 different diagnostic sectors, ...
  - from 1966 to 2017 (<u>51 years</u>)
- 4-5 billion tests per year are requested only in the United Indicators to monitor appropriateness of tumor marker ordering are not available from the literature

clinical laboratory.

#### Assessment of appropriateness of requests of tumor markers – Traditional approach

- It is based on the retrospective evaluation of the requests with reference to medical records.
- Requisition forms of laboratory tests usually do not contain reliable clinical information, thus impairing a direct appraisal of appropriateness.
- Results obtained from a limited number of studies focused on particular patient series are not suitable to develop indicators to be used in the "real world"

# Indicators to monitor appropriateness of tumor markers ordering

We developed "ordering rate indicators" as proxy indicators of inappropriateness using an epidemiologybased model:

#### Ordered tumor markers

VS.

expected orders of tumor markers according to cancer prevalence and guidelines recommendations

(Gion M, et al. Clin Chem Lab Med 2016; 54: 473-82)

## Epidemiological model to estimate the rate of inappropriateness of tumor marker requests

- Ordered. The type and number of tumor markers ordered to outpatients in all Italian Regions in 2011 and 2012 was obtained from the Ministry of Health (over 24 million tumor marker requests were examined).
- *Expected*. Epidemiological data on cancer prevalence were obtained from the Italian Association of Cancer Registries (AIRTum) database (updated 2010).

#### Tumor marker orders vs Italian resident population

Data from: Nsis - Flusso di specialistica ambulatoriale Art 50 (Legge 326/2003)

|                                           | 2012       |
|-------------------------------------------|------------|
| Italian resident population               | 59,685,227 |
| Tumor marker orders                       | 13,207,289 |
| Tumor markers orders/<br>1000 inhabitants | 221.3      |

(Gion M, et al. Clin Chem Lab Med 2016; 54: 473-82)

## Matching orders of tumor markers with prevalence of target malignancies

• We further explored if ordering behavior was driven by the target disease in the case of those markers recommended for specific cancer types only.

#### Matching marker orders with the prevalence target malignancies

| Target<br>malignancy                  | Recommended<br>marker | Prevalent cases<br>(IT, 2010) | Expected requests     | Registered<br>requests <sup>4)</sup> |
|---------------------------------------|-----------------------|-------------------------------|-----------------------|--------------------------------------|
| Breast Ca.                            | CA15.3                | 522.235                       | 432.000 1)            | 1.078.864                            |
| Ovarian Ca.+<br>Endometrial Ca.       | CA125                 | 129.515                       | 659.030 <sup>2)</sup> | 977.189                              |
| Pancreatic Ca. +<br>Biliary tract Ca. | CA19.9                | 18.755                        | 124.751 <sup>3)</sup> | 1.386.169                            |

<sup>1)</sup> Assumption: CA15.3 not requested in prevalent cases without evidence of disease; 12 CA15.3/year in every prevalent case with metastatic disease

- <sup>2)</sup> Assumption: 2 CA125/year in every prevalent case of ovarian or endometrial cancer; 1 CA125/year in every women with suspicious adnexal mass (~400.000)
- <sup>3)</sup> Assumption: 12 CA19.9/year in every prevalent case of Pancreatic Ca.; 1 CA19.9/year in every prevalent

<sup>4)</sup> Italy, 2012

 The developed proxy indicator of inappropriateness showed that tumor markers are overused in Italy and their ordering pattern is not related to cancer epidemiological figures. Massimo Gion\*, Lucia Peloso, Chiara Trevisiol, Elisa Squarcina, Marco Zappa and Aline S.C. Fabricio

#### An epidemiology-based model as a tool to monitor the outbreak of inappropriateness in tumor marker requests: a national scale study



Int J Biol Markers 2017; 00(00): e000-e000 DOI: 10.5301/ijbm.5000274

SHORT COMMUNICATION

#### Epidemiology-based assessment of tumor marker overordering in breast cancer: an algorithm to examine different disease conditions

Chiara Trevisiol<sup>1</sup>, Massimo Gion<sup>2</sup>, Ruggero Dittadi<sup>3</sup>, Marco Zappa<sup>4</sup>, Aline S.C. Fabricio<sup>2</sup>



#### ORIGINAL ARTICLE

Indicators of inappropriate tumour marker use through the mining of electronic health records

Massimo Gion  $MD^1$  <sup>(i)</sup> | Giulia Cardinali MSc<sup>3</sup> | Chiara Trevisiol MSc<sup>4</sup> | Marco Zappa MD PhD<sup>6</sup> | Giulia Rainato MSc<sup>5</sup> | Aline S.C. Fabricio PharmD MSc PhD<sup>2</sup> <sup>(i)</sup>

#### **Tumor markers overuse**

#### Consequences

- Overdiagnosis and risk of overtreatment
- Unnecessary costs
- Overloading of health care services and facilities for confirmatory tests in false positive cases

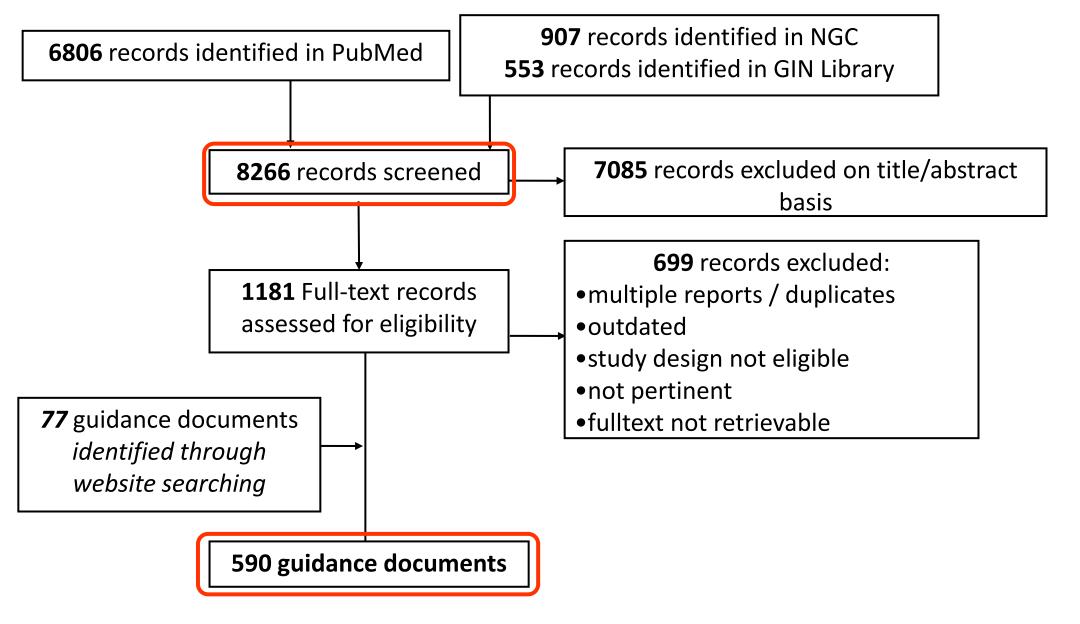
#### **Considerations**

• The pipeline of translational research on tumor markers has not been fully effective, at least in the implementation phase.

Why physicians' compliance to published recommendations on tumor markers is poor?

#### **Clinical Practice Guidelines**

## Potential shortcomings limiting their implementation in clinical practice


- Quality
- Comprehensiveness
- Consistency

Recommendations on circulating tumor markers offered by available clinical practice guidelines on solid tumors have been summarized and side-by-side compared.

| MARCATORI CIRCOLANTI IN ONCOLOGIA<br>GUIDA ALL'USO CLINICO APPROPRIATO<br>Sintesi comparativa delle raccomandazioni nelle linee guida di pratica clinica |                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cinical u<br>Comparativ<br>guidelines (                                                                                                                  | GUIDELINES ng tumor markers: a guide to their appropriate se re summary of recommenc IJBM                                                                                                                                      | to their appropriate                                                                                                                                                                                                        |
|                                                                                                                                                          | Comparative summary of recommendation $\prod_{elSSN 1}$<br>guidelines (PART 2)<br>Massimo Gion <sup>1</sup> , Chiara Trevisiol <sup>2</sup> , Anne W.S. Rutjes <sup>3</sup> , Giulia Rainato <sup>2</sup> , Ali<br>Clin<br>Com | Int J Biol Markers 2017; 32(2): e147-e178<br>DOI:<br>GUIDELINES<br>Treulating tumor markers: a guide to their appropriate<br>inical use<br>mparative summary of recommendations from clinical practice<br>idelines (PART 3) |

#### **Project steps**

- Search of guidelines on solid tumors (years: 2009-2015)
- 2. Selection of pertinent guidelines
- 3. Guidelines quality assessment (IOM, AGREE)
- 4. Extraction of information on tumor markers
- 5. Summary of recommendations and information



#### **Guidelines quality**

Selected guidance documents were first appraised to determine their adherence to the **Institute of Medicine (IOM)** standard:

An explicit statement (and evidences) that the clinical practice guideline was based on a systematic review

Adherence of guidance documents reported as "Clinical Practice Guidelines" to the IOM standard

| • | Total                                                                                            | 590 (100%)  |
|---|--------------------------------------------------------------------------------------------------|-------------|
| • | Based on systematic reviews of existing evidence (CPGs)                                          | 168 (28.5%) |
| • | Systematic search declared, but applied<br>methods did not meet minimum standards<br>for quality | 137 (23.2%) |
| • | Guidance documents did not report any use of literature evaluation                               | 164 (27.8%) |

(Gion M, Trevisiol C, Rutjes AWS, Rainato G, Fabricio ASC. Int J Biol Markers 2016; 31(4): e332-e367, 32(1): e1-e52 and 32(2): e147-e181)

104 (27.8%)

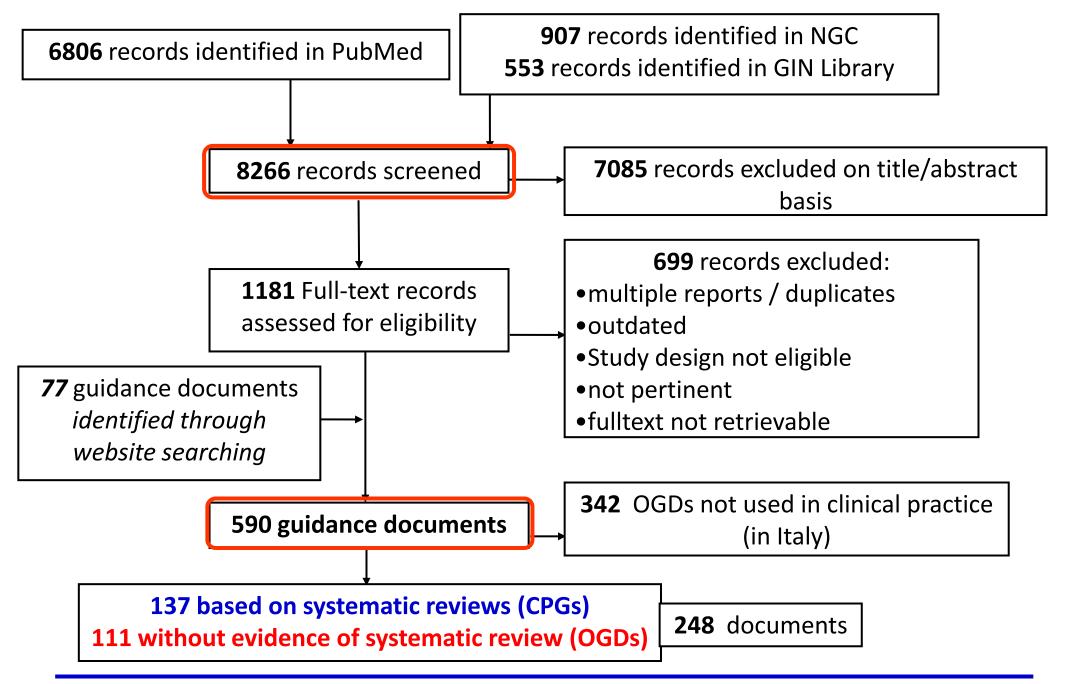
### Insufficient uptake of systematic search methods in clinical practice guideline: a systematic review

C. Trevisiol<sup>1</sup>, M. Cinquini<sup>2</sup>, ASC. Fabricio<sup>3</sup>, M. Gion<sup>3</sup>, AWS. Rutjes<sup>4,5</sup>

<sup>1</sup>Veneto Institute of Oncology IOV - IRCCS, Padua, Italy <sup>2</sup>Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy <sup>3</sup>Regional Center for Biomarkers, AULSS 3 Venice, Italy <sup>4</sup>Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland <sup>5</sup>Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland

#### **Guidelines quality**

- A relatively small number of guidance documents was informed by scientific evidence identified through adequate systematic search methods.
- A substantial room for improvement of applied methods and reporting was observed, which could eventually impact on implementation of recommendations.


#### **Clinical Practice Guidelines**

Potential shortcoming restraining their implementation in daily practice

- Quality
- Comprehensiveness
- Consistency

#### Summary of reccomendations vs. guidelines quality

- 1. Documents providing evidence of systematic review (Clinical Practice Guidelines CPGs).
- 2. Guidance documents without evidence of systematic review (Other Guidance Documents OGDs).
  - **OGDs** are produced also by authoritative institutions or medical societies (and are widely used).
  - Whenever 25% or more of the panel members declared that a given **OGD** was used in clinical practice, it was retained.



#### **Summary of Guidelines reccomendations**

#### Comprehensiveness

• Do available recommendations meet the majority of clinical questions?

#### Consistency

• Are recommendations on a same question consistent among different guidelines?

#### **Gidelines comprehensivenes and consistency**

#### **Gastrointestinal tract malignancies as an example**

Legenda

**CEA**: the marker is recommended

**None/No CA19.9**: guidelines explicitly recommend against the use of any marker/a given marker

**n.c.**: scenario not considered by guidelines

Ø : (empty set symbol) the examined guidelines either do not address TMs or, if TMs are addressed, do not formulate recommendations

#### **Recommendations (both formal and implicit) from CPGs and from OGDs**

| Cancer type                                      | Colorectal         | Esophageal | Hepatocarcinoma         | Pancreatic | Gastric                     | Biliary tract               |
|--------------------------------------------------|--------------------|------------|-------------------------|------------|-----------------------------|-----------------------------|
| Scenario                                         |                    |            |                         |            |                             |                             |
|                                                  |                    |            | AFP/ <mark>Ø</mark> (*) | n.c.       |                             | <mark>Ø</mark> (*)          |
| Screening                                        | <mark>Ø</mark> (*) | Ø          | No AFP                  | Ø          | Ø                           | None/CA19.9                 |
|                                                  |                    |            | PIVKA, AFPL3 yes/no     |            |                             |                             |
| Differential diagnosis                           | Ø                  | Ø          | ØØ                      |            | Ø                           | Ø                           |
|                                                  | No CA19.9          |            | AFP yes/no, AFPL3       | CA19.9     | CA19.9, CEA                 | None/CA19.9                 |
| Initial work-up                                  | CEA/Ø              | Ø          | Ø                       | CA19.9/Ø   | Ø                           | Ø                           |
|                                                  |                    |            | AFP                     |            |                             | CA19.9, CEA                 |
| Reassessment after curative treatment            | Ø                  | n.c.       | n.c.                    | n.c.       | n.c.                        | n.c.                        |
|                                                  |                    |            | AFP/Ø                   | CA19.9     | CA19.9, CEA/ <mark>Ø</mark> | Ø                           |
| Follow-up                                        | CEA                | Ø          | AFP                     | n.c.       | None                        | n.c.                        |
|                                                  | No CA19.9          |            |                         | CA19.9     |                             | Ø                           |
| Monitoring treatment response (advanced disease) | Ø                  | Ø          | Ø                       | Ø          | Ø                           | n.c.                        |
|                                                  |                    |            | AFP                     | CA19.9     |                             | CA19.9, CEA/ <mark>Ø</mark> |

(\*) Screening of people at increased risk

#### **Recommendations (both formal and implicit) from CPGs and from OGDs**

| Cancer type                                      | Colorectal | Esophageal | Hepatocarcinoma | Pancreatic | Gastric | Biliary tract |
|--------------------------------------------------|------------|------------|-----------------|------------|---------|---------------|
| Scenario                                         |            |            |                 |            |         |               |
| Screening                                        |            | Ø          |                 | Ø          | Ø       |               |
| Differential diagnosis                           |            | nmet       |                 |            |         |               |
| Initial work-up                                  |            | Ø          | clinical gues   |            | Ø       |               |
| Reassessment after curative treatment            | Ø          |            |                 | rions      |         | Ø             |
| Follow-up                                        |            | Ø          |                 |            |         | Ø             |
| Monitoring treatment response (advanced disease) | Ø          | Ø          |                 |            | Ø       |               |

(\*) Screening of people at increased risk

#### **Recommendations (both formal and implicit) from CPGs and from OGDs**

| Cancer type                                                                                                                  | Colorectal | Esophageal | Hepatocarcinc           | oma                | Pancreatic             | Gastric     | Biliary tract |                    |
|------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------|--------------------|------------------------|-------------|---------------|--------------------|
| Scenari                                                                                                                      |            |            |                         |                    |                        |             |               |                    |
| 100                                                                                                                          |            |            | AFP/ <mark>Ø</mark> (*) | $\mathbf{\Lambda}$ |                        |             | <b>Ø</b> (*)  |                    |
| Screening                                                                                                                    | 7.5%       |            | No AFP                  |                    |                        |             | None/CA       | 19.9               |
|                                                                                                                              | Ster       |            | PIVKA, AFPL3 ye         | es/no              |                        |             |               |                    |
| Differential diagnosis                                                                                                       |            | Cies       | Ø                       | Δ                  | ø 🛆                    | ø \Lambda   | Ø             | $\mathbf{\Lambda}$ |
|                                                                                                                              |            | ् वग       | no, AF                  | PL3                | CA19.9                 | CA19.9, CEA | None/CA       | 19.9               |
| Screening<br>Screening<br>Differential diagnosis<br>Initial work-up<br>Reassessment after curative<br>treatment<br>Follow-up | CEA/Ø      |            | ng die                  |                    | CA19.9/ <mark>Ø</mark> |             | Ø             |                    |
|                                                                                                                              |            |            | Ан                      | 0/0                |                        |             | CA19.9,       | CEA                |
| Reassessment after curative                                                                                                  |            |            |                         |                    |                        | n.c. 🛕      |               |                    |
| treatment                                                                                                                    |            |            | AFP/Ø                   | $\mathbf{\Lambda}$ |                        | S// CEA/Ø   |               |                    |
|                                                                                                                              |            |            |                         |                    |                        | es -        |               |                    |
| Follow-up                                                                                                                    |            |            |                         |                    |                        |             |               |                    |
| Monitoring treatment                                                                                                         |            |            | Ø                       |                    | ø 🛆                    |             |               |                    |
| response (advanced disease)                                                                                                  |            |            | AFP                     |                    | CA19.9                 |             | CA19.9, CI    | EA/                |

(\*) Screening of people at increased risk

#### **Gidelines comprehensivenes and consistency**

Why available guidelines recommendations fail to meet several clinical questions on tumor marker ?

Why recommendations from different guidelines are not consistent on the same clinical question?

## Requisites for adoption of a biomarker in the clinical care

Three semantic terms have been accepted as requisites for adoption of a tumor marker test into clinical care:

- Analytical validity
- Clinical validity
- Clinical utility

### **Analytical Validity**

- Analytic validity refers to the accuracy with which a particular genetic or biochemical indicator, is identified by a given laboratory test.
- It includes the specific technical requirements of the assay chosen and its performances (i.e. analytical sensitivity, specificity, ...)

#### **Clinical Validity**

 Clinical validity describes the accuracy with which a test is associated to a particular clinical condition (diagnostic sensitivity, specificity, positive and negative predictive value) or predicts a clinical outcome (prognosis, the response to a drug).

### **Clinical Utility**

- Clinical utility refers to the risks and benefits resulting from use of the test.
- Measurement of clinical utility requires evaluation of the medical and social outcomes associated with testing, and subsequent interventions for people with both positive and negative test results.

#### **Analytical & Clinical Validity vs. Clinical Utility**

- Clinical utility implies that high levels of evidence exist to support the claim that the use of the tumor marker produces better outcomes for the patient than if it were not available.
- One cannot have clinical utility without high analytical and clinical validity, but ....
- ... analytical and clinical validity alone are insufficient to introduce the test into routine practice.

### **Clinical Practice Guidelines**

Frequently, guidelines do not endorse the results of research studies, because ...

... Clinical Practice Guidelines cannot recommend on the basis of clinical validity alone.

# The role (responsability?) of the regulatory framework

### The regulatory issues (USA)

- The regulatory environment of laboratory assays, including tumor biomarker tests, is at best inconsistent.
- While the Office of In Vitro Diagnostics is superb in assessing the <u>analytical validity</u> of tumor biomarker tests, their hands are tied in regards to insisting on <u>clinical utility</u> as a criterion for clearance or approval of a tumor biomarker test.
- Therefore, approval of a tumor biomarker test by the FDA does not necessarily imply that it should be used to direct patient care.

(Hayes DF, JAMA, 2017)

### The regulatory issues (EU)

- Innovative medicinal products receive a marketing authorization from the European Commission based on a positive benefit—risk assessment by the EMA.
- IVD may be sold in the EU with a CE mark after assessment and approval from a notified bodies (NB). For IVD the certification will focus on the technical features and technical quality of the products.

(Enzmann H et al, 2016)

The regulatory issues

## Still a deregulated environment, as concerns cancer biomarkers!

### **Concluding remarks**

- The clinical use of classical tumor marker is largely inappropriate, due at least in part to the scarcity of evidence on their clinical utility.
- A re-engineering of clinical research is necessary to facilitate the efficient translation of new biomarker assays in clinical practice.
- Such re-engineered research would use novel study designs based on clinical utility endpoints, whether in formal trials or in real-world studies.

## Thank you for your attention

Massimo Gion: Responsabile Aline S.C. Fabricio: Coordinatore Scientifico Chiara Trevisiol: Referente EBM & Appropriatezza Antoneite Leon: Segreteria di redazione UBM Anna Contato, Edoardo Peroni: Ricercatori Ornella Scattolin: Coordinatore Amministrativo