

Il ruolo dell'imaging molecolare nell'era della immunoterapia

Laura Evangelista MD PhD

Nuclear Medicine, Department of Medicine – DIMED, University of Padua

Istituto Oncologico Veneto IOV – IRCCS, Padova

- Needs and priorities
- Current guidelines
- Literature evidences
- Potential reccomendations
- The future is.....

- Needs and priorities
- Current guidelines
- Literature evidences
- Potential reccomendations
- The future is.....

Needs

Priorities

- Is there any response to immunotherapy?
- How can differentiate between pseudoprogression and hyperprogression?
- May I predict the response to immunotherapy, by selecting appropriate patients?
- May I anticipate the development of immune related side effects?

- Selection of patients who may benefit from immunotherapy
- An early prediction of response to immunotherapy (indirect on costs)
- Data about follow-up after stopping immunotherapy
- Standardization of the criteria interpretation

- Needs and priorities
- Current guidelines
- Literature evidences
- Potential reccomendations
- The future is.....

Current guidelines – ESMO and AIOM

Lung cancer

- No specific recommendation are present
- Probably RECIST 1.1. is recommended

Tumour burden: devalues the importance of each target lesion in favour of the whole 'quantity' of disease.

Confirmation: any response, other than stable disease, requires to be confirmed by a consecutive assessment at least 4 weeks after first documentation.

New lesions: do not necessarily represent a PD. They must be included into the whole tumour burden and their significance is subordinate to the following confirmation.

No data about FDG PET/CT

Melanoma

• For the evaluation of response to Ipilimumab, the IrRC (immune-related response criteria) are suggested.

	irRC
New, measurable lesions (i.e., $\geq 5 \times 5$ mm)	Incorporated into tumor burden
New, nonmeasurable	Do not define progression
Non-index lesions	Contribute to defining irCR (complete disappearance required)
CR	Disappearance of all lesions in two consecutive observations not less than 4 wk apart
PR	≥50% decrease in tumor burden compared with baseline in two observations at least 4 wk apart
SD	50% decrease in tumor burden compared with baseline cannot be established nor 25% increase compared with nadir
PD	At least 25% increase in tumor burden compared with nadir (at any single time point) in two consecutive observations at least 4 wk apart

- Needs and priorities
- Current guidelines
- Literature evidences
- Potential reccomendations
- The future is.....

Pubmed evidences

Summary of evidences - Melanoma

Author (year)	Study design	N of pts	Treatment	Results
Sachpekidis et al (2015)	Prospective	22	Ipilimumab	Early response to ICIs
Kong et al (2016)	Prospective	27	20 pembrolizumab 7 nivolumab	Residual disease at CT but + at PET (43%)
Breki et al (2016)	Prospective	31	Ipilimumab	Reclassification after PERCIST analysis
Cho et al (2017)	Prospective	20	16 Ipilimumab 1 nivolumab 3 BMS-936559	RECIST 1.1 and PERCIST give a 100% PPV for the response
Annor et al (2018)	Prospective	41	Ipilimumab	A specific cut-off for FDG uptake was defined for the evaluation of response to therapy
Sachpekidis et al (2018)	Prospective	41	Ipilimumab	PERCIMT is a more sensitive predictor of response to therapy
Sachpekidis et al (2019)	Prospective	41	Ipilimumab	Spleen and sarcoid-like lymphadenopathy are weakly correlated with the response to ICIs
Sanli et al (2019)	Retrospective	34	Ipilimumab	Tumor heterogeneity is associated with a poor response to ICIs
Saben et al (2019)	Retrospective	55	Ipilimumab	Low tumor burden (by metabolic analysis) correlates with a better prognosis
lto et al (2019)	Retrospective	142	Ipilimumab	wMTV is a predictor of response and OS to ICIs
lto et al (2019)	Retrospective	60	Ipilimumab	PERCIST criteria are correlated with OS

Summary of evidences – Lung cancer

Author (year)	Study design	N of pts	Treatment	Results
Kaira et al (2018)	Prospective	24	Nivolumab	TLG is able to predict the response to ICIs
Grizzi et al (2018)	Prospective	27	23 Nivolumab 4 Pembrolizumab	SUVmax < 17.1 is associated with a fast progression during ICIs therapy
FIR trial (2018)	Prospective	114	Nivolumab	PET/CT is able to early predict the response to ICIs (particularly in patients with a PD at CT)
Evangelista et al (2019)	Retrospective	32	Nivolumab	Whole semiquantitative analysis area associated with a poor response to therapy
Humbert et al (2019)	Prospective	62	Pembrolizumab Nivolumab	Serial FDG PET can identify patients with a potential response to ICIs and that should be continously treated with ICIs
Goldfarb et al (2019)	Prospective	28	Nivolumab	New criteria for the evaluation of response to ICIs (iPERCIST)
Castello et al (2020)	Prospective	35	Pembrolizumab Nivolumab	FDG PET (MTV and TLG) and high CTC have a prognostic impact on the response to ICIs
Polverari et al (2020)	Retrospective	57	Nivolumab	FDG PET can have an important prognostic role in prediction of response to ICIs

Literature evidences – FDG PET

Early evaluation of response to immunotherapy

- Interpretation
- Timing
- Standardization

Literature evidences – FDG PET

The prediction of response to immunotherapy

Is it possible to predict who will respond to ICIs and the OS?

PD-L1 expression and FDG PET

Semiquantitative features

Histology	Ν	SUVmax according to PD-L1 expression, mean value (range)			
		Negative Positive		<i>P</i> value	
Overall ¹	579	4.69 (0–30.6)	9.89 (0.8–31.05)	<0.0001	
ADC	441	3.84 (0-30.4)	7.81 (0.8–28.3)	<0.0001	
SCC	103	9.18 (1.5–30.6)	12.60 (2.1–31.05)	0.0044	
LCC	4	-	12.76 (4.81–21.4)	-	
SCLC	16	7.40 (2.42–14.7)	3.4	0.3225	
LCNEC	15	8.88 (2.8–14.57)	10.91 (6.1–14.54)	0.4491	

- Glucose metabolism was generally higher in patients with PD-L1 protein expression than those without PD-L1.
- Smoking, the presence of pleural invasion, and high SUVmax in PET/CT were predictors of PD-L1 protein expression in patients with lung cancer, especially NSCLC.

Radiomic features

TLG vs PD/non PD p=0.037

Volume vs PD/non PD p=0.035

Assessing PD-L1 Expression Level by Radiomic Features From PET/CT in Nonsmall Cell Lung Cancer Patients: An Initial Result

Mengmeng Jiang, MD, Dazhen Sun, MA, Yinglong Guo, MM, Yixian Guo, MD, Jie Xiao, MD, Lisheng Wang, PhD, Xiuzhong Yao, MD, PhD

Tumor burden in patients with advanced melanoma as quantified by 18F-FDG PET/CT is a strong independent prognostic factor for OS after immunotherapy with ipilimumab.

AJR 2019; 212:1318–1326

	Disease Progression Status				Survival Status			
	Patients \ (<i>n</i> =	Vith Progression 19; 55.9%)	Patients Without Progression (n = 15; 44.1%)		Patients Who Died (<i>n</i> = 12; 35.3%)		Patients Who Survived (n = 22; 64.7%)	
Biomarker	Median	Mean ± SD	Median	Mean ± SD	Median	Mean ± SD	Median	Mean ± SD
SUV _{max}	7.73	9.04 ± 5.38	7.13	10.48 ± 8.01	9.88	12.09 ± 8.22	7.03	8.36 ± 5.28
Peak SUV	5.58	7.18 ± 4.86	6.5	8.63 ± 6.97	8.16	10.15 ± 7.02	5.51	6.55 ± 4.78
MTV (mL)	6.1	60.11 ± 142.46	46.03	109.64 ± 152.59	56.47	136.67 ± 160.15	2.84	52.12 ± 133.49
TLG (g)	14.06	349.53 ± 870.95	102.79	789.53 ± 1172.71	316.28	985.97 ± 1240.9	12.14	302.38 ± 815.43
TH index	6433.18	5978.36 ± 1147.73	5461.19	5667.84 ± 1389.53	5245.52	5158.08 ± 808.54	6658.94	6214.06 ± 1303.86

The TH index of FDG-avid lesions was found to be significantly associated with the OS of patients with metastatic or recurrent melanoma treated with immune modulation therapy.

TH index=AUC value of a cumulative SUV volume histogram obtained by plotting the percentage of volume greater than the percentage of SUV with a lower AUC value corresponding to higher degrees of TH.

Literature evidences – FDG PET

Early evaluation of response to immunotherapy

- Interpretation
- Timing
- Standardization

Evaluation of response to immunotherapy-1

- 20 patients with melanoma
- Ipilumab or nivolumab
- Scan intervals: before (SCAN-1), days 21–28 (SCAN-2), 4 mo (SCAN-3)

J Nucl Med 2017; 58:1421–1428

Evaluation of response to immunotherapy-2

- 62 patients with lung cancer
- Pembrolizumab or nivolumab
- Scan intervals: before (SCAN-1), 7-weeks (SCAN-2), 6 additional weeks (SCAN-3)

EJNMMI 2019; October 2019

Limitations of FDG PET/CT: pitfalls

Evolution of disease

Immune-related side effects

Eur J Nucl Med Mol Imaging. 2019;46:238-250

The response to therapy: old vs immuno-criteria

Response	EORTC ^a	PERCIST ^b	PECRIT ^c		PERCIMT ^d		
Complete response (CF	R) Complete resolution of FDG uptake	Disappearance of all metabolically active tumours	RECIST 1.1 (disappearance of all target lesions; reduction in short axis of target lymph nodes to	Clinical benefit	Complete resolution preexisting ¹⁸ F-F lesions; no new ¹⁸ F-FDG-avid le	n of all DG-avid sions	Clinical benefit
Partial response (PR)	imPERCIST5		iPERCIST			of	Clinical benefit
Stable disease (SD)	The appearance of cannot be considered Melanoma n= 60	of a single lesion ered a true PMD. pts	Two new categori category: unconfi metabolic disease progressive metal Lung cancer n=28	ies replacing the rmed progressive e (UPMD) and co bolic disease (CP s pts	PMD e nfirmed MD).	ions. CR	Clinical benefit
	lto, JNM 2019; 60): 35-341	EJNMMI 2019; 9:8	8			
Progressive disease (PI	D) Increase in tumour FDG uptake of >25%; increase in maximum tumour of >20%; new metastases	Increase in SULpeak of >30% or the appearance of a new metabolically active lesion	of ≤15% RECIST 1.1 (increase in target lesion diameter sum of >20% and at least 5 mm or new lesions)	No clinical benefit	Four or more new l of <1 cm in func diameter or three new lesions of > functional diame or more new lesi more than 1.5 cm functional diame	esions tional or more 1.0 cm in ter or two ons of n in ter	No clinical benefit

Lymphoma model: Lymphoma Response to Immunomodulatory Therapy Criteria (LYRIC)

LYRIC is an adapted Lugano classification for the evaluation of lymphoma after immune-based treatment. Indeterminate response (IR)

- IR(1): ≥ 50% increase in overall tumor burden (sum of the product of the perpendicular diameters (SPD) of up to six target measurable nodes and extranodal sites) occurred in the first 12 weeks of therapy and without clinical deterioration
- IR(2): new lesions or ≥ 50% increase of existing lesion(s) without a ≥ 50% increase of overall tumor burden at any time during treatment.
- **IR(3):** increased FDG uptake of one or more lesions without any increase in size or number of those lesions. In case of IR: biopsy or "wait and watch"

a b a b IR 2 IR 3

- Needs and priorities
- Current guidelines
- Literature evidences
- Potential reccomendations
- The future is.....

When to use FDG PET/CT ?

	M	elanoma	Lung cancer		
	Ready?	Further evidences?	Ready?	Further evidences?	
Prediction of response	Probably yes (n= >250 pts)	Sure	Not yet (n= 59 pts)	Sure	
Assessment of response	Not yet (n= >300 pts)	Sure	Not yet (n= >200 pts)	Sure	
Standardized criteria	Not yet (n= >300* pts)	Sure	Not yet (n= > 200* pts)	Sure	

*variable criteria

- Needs and priorities
- Current guidelines
- Literature evidences
- Potential reccomendations
- The future is.....

Other than FDG -alternative tracers

J Nucl Med 2019; in press

Thanks for the kind attention!

laura.evangelista@unipd.it laura.evangelista@iov.veneto.it