

Biomarcatori e Tecniche di Diagnostica per Immagini nella Valutazione dell'Infiammazione in Oncologia

2° Edizione

RUOLO DELL'IMAGING PET PER L'IDENTIFICAZIONE DELL'IPOSSIA TUMORALE

Maria Picchio

Università Vita-Salute San Raffaele U.O. Medicina Nucleare, IRCCS Ospedale San Raffaele

20 febbraio 2020

Aula Multimediale Campus Centro di Riferimento Oncologico di Aviano, Via Franco Gallini, 2– Aviano (PN)

Tumour Hypoxia: needs and priorities

The presence of hypoxia is a characteristic feature of solid tumors and has been identified in many neoplasms, related to changes in gene expression/genetic instability as a result of its resistance to apoptosis and decreased DNA repair.

It favors the survival of malignant cells in a hostile environment and the expression of an **aggressive phenotype** that can increase the risk of tumor metastasis

Hypoxia is the cause of **resistance to radiotherapy**. The reduced presence of oxygen decreases the free formation of radicals which radiotherapy relies on to cause DNA damage to tumor cells

Hypoxic tumors present chemotherapeutic resistance due to reduced drug penetration (caused by the irregular vascularization), extracellular acidification, and genomic instability and resistance to apoptosis.

HIF: Hypoxia Inducible Factor

HIF is a transcription factor that plays a key role in the response of cells to oxygen levels. HIF is a heterodimer of a- and β -subunits where the a-subunit is translated constitutively but has a very short half-life under normal oxygen concentrations.

During hypoxic condition the HIF a-subunit is activated, binds the β -subunits leading to composition of the heterodimeric HIF-1

HIF-1 regulates the transcription of several genes including vascular epithelial growth factor (VEGF), glycolytic enzymes, glucose transporters (Glut-1), pH regulators (carbonic anidrase IX, CA IX).

Tumour Hypoxia: needs and priorities

(Brown J.M. et al. Nature Reviews Cancer 2004)

The heterogeneity of cancer and the lack of a universal hypoxia detection tracer/technique presents a challenge for the correlation of hypoxia with treatment planning and prognosis.

Why investigating tumour hypoxia?

- To characterize tumor heterogeneity
- To evaluate tumor prognosis
- To predict treatment response

• To select patients who might benefit from "hypoxiadirected therapies" or intensive treatment approach (i.e RT with boost on hypoxic areas; hypoxia as therapeutic target)

How to investigate tumor hypoxia?

Direct oxygenation measurement

Limits of direct oxygenation measurements:

- Invasiveness
- Feasibility to only superficially assessable tumors
- Oxygenation status solely in a particular region
- Cannot reliably monitor hypoxia levels over time

How to investigate tumor hypoxia?

Hypoxia biomarkers: exogenous (pimonidazole) and endogenous (HIF 1a, CA-IX, VEGF and GLUT-1)

Equivocal results regarding the correlation between expression of hypoxia biomarkers and patient outcome (differential expression of these biomarkers in specific tumor microenvironment)

In vivo Imaging

Available bioimaging modalities: principal properties and applications

Technique Feature	Optical	MIRI	PET	SPECT	X-ray CT
EM radiation	Visible / NIR	Radiowaves	High energy γ rays	Lower energy γ rays	X-ray
Spatial resolution	15-1000 mm	4~100 μm 1 mm fMRI	1-2 mm	1-2 mm	12-50 μm 50-200 μm
Depth	< 1cm	No limit	No limit	No limit	No limit
Sensitivity to probe	µg / mg	µg / mg	ng	ng	-
Key use	Visualization of cells	Anatomical / functional brain imaging	Metabolic imaging		Lung and bone tumor imaging

Mirabello et al. Frontiers in Chemistry, 2018

In vivo Imaging

Necessary criteria to be considered in the development of a hypoxia tracer. Ideal hypoxia tracer characteristics

Mirabello et al. Frontiers in Chemistry, 2018

Molecular Imaging (PET)

Blood vessel integrins Perfusion Monitoring Gene Therapy [18F]FHBG VEGFR [150]H_0 **MMPs** [¹⁸F]FES Annexin-V [11CJACOH Apoptosis [¹⁸F]FAZA,[¹⁸F]MISO Cu(ATSM) ER PS +> DNA [¹⁸F]FDG-6-phosphat [¹⁸F]Choline- Protein phosphat Synthesis metastasis FASE APUD pO2 System Hormonal Hexokinase Regulation Cholinkinase Thymidine-Kinase 1 extracellular GLUT matrix CD20/ EGFR CHT LAT1/2 DAT/NET SERT ENT/CNT sst/GRP [¹⁸F]FDG Peptides [¹⁸F]Choline [¹⁸F]Galacto-RGD Amino Acids Amine Precursors Substrates/ Antibodies [68Ga]anti-Her2-fragment [18F]FET, [11C]MET inhibitors [18F]FDOPA, [11C]HTP Peptides Nucleosides [68Ga]DOTATOC [18F]FLT AAR CCR Focus

Clinical AAGR Concer Research

PET to investigate tumor hypoxia

□ Non invasive (Clinically feasible)

□ Identification and quantification of regional tumor tissue hypoxia in superficial and deep tumors

□ Representative of global tumor heterogeneity

PET to investigate tumor hypoxia

TABLE 1 | Summary of clinical imaging findings and recommendations for the use of most common hypoxia tracers.

Tumor	[¹⁸ F]FMISO	[¹⁸ F]F-HX4	[¹⁸ F]FAZA	[¹⁸ F]FETNIM	[¹⁸ F]F-EF5	[¹⁸ F]F-RP170	⁶⁴ CuCu(ATSM)
Brain							
Head and neck							
Breast							
Sarcoma							
Lung							
Lymphoma							
Renal							
Liver							
Colorectal							
Bladder							
Cervical							
Prostate							

Adapted from Fleming et al. (2014).

Yes, good clinical data obtained.

Recommended favorable preclinical/metabolic data.

Not recommended, unfavorable preclinical/metabolic data.

No, poor clinical data.

Mirabello et al. Frontiers in Chemistry, 2018

Tumour hypoxia PET Imaging: 18F-FAZA Nitroimidazoles (fluoroazomycin arabinoside)

RNO2: Nitro functional group Bioreductive metabolism of nitroimidazoles: accumulation due to reduction

18F-FAZA hypoxia PET Imaging: Human Studies Halmos et al. Cl.

Halmos et al. Clin Nuc Med 2014

Publication	No. Patients	Tumor Site (n)	Definition of Hypoxic Volume	Percentage of Patients With Increased ¹⁸ F-FAZA Uptake (ie, hypoxia)
Grosu et al ¹⁶ and Souvatzoglou et al ⁴³	18	Head and neck (18)	$T/M \ge 1.5*$	83
Postema et al44	50	Head and neck (9)	Visual inspection and T/B ratio ≥1.2	66
		Lymphoma (21)		14
		High-grade glioma (7)		100
		Lung (13)		54
Schuetz et al45	15	Cervix (15)	T/M ≥1.2†	33
Shi et al ⁴⁶	5	Head and neck (5)	Different kinetic models	80
Garcia-Parra et al47	14	Prostate (14)	T/B ratio [‡]	0
Mortensen et al48	40	Head and neck (40)	T/M ≥1.4§	63
Bollineni et al49	11	Lung (11)	T/B ratio \geq 1.2 and T/B ratio \geq 1.4	100

- Savi A et al. First evaluation of PET based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med. 2017;58:1224-1229.
- Mapelli P et al. Concomitant Lung Cancer and Gastrointestinal Stromal Tumor: First Report of Hypoxia Imaging With 18F-FAZA PET/CT. Clin Nucl Med. 2017.
- Mapelli P et al. Hypoxia 18F-FAZA PET/CT imaging in lung cancer and high-grade glioma: open issues in clinical application. Clin Transl Imaging 2017
- Mapelli P et al. 18F-FAZA PET/CT Hypoxia Imaging of High-Grade Glioma Before and After Radiotherapy. Clinical Nuclear Medicine 2017
- Mapelli P et al. 18F-FAZA PET/CT in the preoperative evaluation of **NSCLC**: comparison with 18F-FDG and immunohistochemistry. Curr Radiopharm. **2018**
- Quartuccio et al. Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers. Clin Transl Imaging **2020**
- Mapelli P and Picchio M. 18F-FAZA PET imaging in tumor hypoxia: A focus on high-grade glioma. IJBM 2020

Our rational

- Lack of studies matching hypoxia in specific hypoxic subvolumes of whole tumour specimen (heterogeneity of tumor hypoxia within the tumour mass)
- No consensus over the interpretation and analysis of hypoxiapositive areas

Personalized Image-guided treatment

OSR Funded Grants in Hypoxia PET Molecular Imaging (18F-FAZA)

Respiratory gated PET/CT technique and FAZA for the evaluation of hypoxia in **NSCLC (FAZA-lung)** Ricerca Finalizzata GR-1575612 - PI: M. Picchio

Prognostic value of FAZA PET/CT in **glioma patients** referred to chemo-radiation therapy: comparison with MRI and correlation with molecular markers of hypoxia (FAZA-glioma) AIRC IG 2014 Id.1524 - PI: M. Picchio

The role of 18F-FAZA PET Imaging technique in detecting LN metastases in Renal cell carcinoma pts (FAZA RCC LNI) GR-2013-02357486 - Group Leader: M. Picchio

Ministère della Salute

Decoding malignant glioma heterogeneity by fully hybrid PET/MR for Hypoxia, PERfusion and Diffusion Spatial habitat imaging: the **HypERDIrect study** Ricerca Finalizzata GR-2018-12365670 - PI: A. Castellano

llin<u>istère</u> della Salute

Project FAZA-lung cancer

- Biodistribution and dosimetry evaluation
- Evaluation of tumor characterization and heterogeneity by comparing FDG and FAZA-PET/CT with immunoistochemical hypoxia markers of the surgical specimen
- Imaging Protocol optimisation

First Evaluation of PET-Based Human Biodistribution and Dosimetry of ¹⁸F-FAZA, a Tracer for Imaging Tumor Hypoxia

Annarita Savi¹, Elena Incerti¹, Federico Fallanca¹, Valentino Bettinardi¹, Francesca Rossetti², Cristina Monterisi³, Antonia Compierchio¹, Giampiero Negri², Piero Zannini², Luigi Gianolli¹, and Maria Picchio¹

¹Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; ²Thoracic Surgery Department, IRCCS San Raffaele Scientific Institute, Milan, Italy; and ³University of Milano–Bicocca, Milan, Italy

FIGURE 1. Coronal images of representative patient at 10, 60, 120, and 240 min (from left to right) after injection of ¹⁸F-FAZA.

The biodistribution and internal dosimetry profiles for ¹⁸F-FAZA in humans indicate a favorable radiation risk profile, thus making the use of whole-body ¹⁸F-FAZA PET/CT feasible for evaluating clinical hypoxia and safe for consecutive studies when clinically required.

TABLE 2 Residence Times of ¹⁸ F-FAZA in Measured Source Organs						
Source organ	Time					
Brain	0.014 ± 0.002					
Gallbladder content	0.019 ± 0.001					
Intestine	0.013 ± 0.005					
Heart content	0.018 ± 0.002					
Kidneys	0.025 ± 0.003					
Liver	0.110 ± 0.019					
Lungs	0.036 ± 0.011					
Muscle	1.090 ± 0.180					
Red marrow	0.034 ± 0.005					
Spleen	0.011 ± 0.003					
Urinary bladder content at 2 h	0.055 ± 0.009					
Urinary bladder content at 4 h	0.081 ± 0.008					
Remainder of body at 2 h	1.130 ± 0.320					
Remainder of body at 4 h	1.100 ± 0.310					
Data are hours (mean \pm SD; $n = 5$ patients).						

Savi et al. J Nucl Med 2017

Current Radiopharmaceuticals, 2018, 11, 50-57

RESEARCH ARTICLE

18F-FAZA PET/CT in the Preoperative Evaluation of NSCLC: Comparison with 18F-FDG and Immunohistochemistry

Paola Mapelli^{1,2}, Valentino Bettinardi¹, Federico Fallanca¹, Elena Incerti¹, Antonia Compierchio¹, Francesca Rossetti³, Angela Coliva¹, Annarita Savi¹, Claudio Doglioni^{2,4}, Giampiero Negri^{2,3}, Luigi Gianolli¹ and Maria Picchio^{1,2,*}

Immunohistochemical analysis supported the presence of hypoxia as seen on 18F-FAZA PET/CT images

Moderate nuclear reactivity in 20% of neoplastic cells for HIF-1 along with expression by numerous intratumoural, inflammatory cells, mainly macrophages (A); CA-IX stained 70% of neoplastic cells (B) with moderate intensity and GLUT-1 showed intense staining in 30% of neoplastic cells (C).

Tumor characterization and heterogeneity FDG-PET - FAZA-PET - ICH

FAZA HYPOXIA Negative pt

Adapted from Mapelli P, et al. Clin and Transl Imaging, 2017

Hypoxia PET Imaging in lung cancer Conclusion

- Safe dosimetry and adequate biodistribution for clinical studies
- Good correlation with immunohistochemistry
- Potential role to adopt hypoxia-directed trp approaches guided by non invasive PET Imaging methods

Project FAZA-glioma

- Guiding tumour sampling (comparison with standard MRI-guided sampling)
- Planning personalized radiation treatment (comparison with standard MRI-based treatment planning)
- Defining the spatial concordance between disease pseudoprogression/radionecrosis and hypoxia
- Predicting patient outcome

Clinical and Translational Imaging https://doi.org/10.1007/s40336-020-00358-0

MINI - REVIEW

Hypoxia PET imaging beyond ¹⁸F-FMISO in patients with high-grade glioma: ¹⁸F-FAZA and other hypoxia radiotracers

Received: 11 December 2019 / Accepted: 18 January 2020 © Italian Association of Nuclear Medicine and Molecular Imaging 2020

Natale Quartuccio¹ · Riccardo Laudicella² · Paola Mapelli^{3,4} · Priscilla Guglielmo⁵ · Daniele Antonio Pizzuto⁶ · Michele Boero⁵ · Gaspare Arnone¹ · Maria Picchio^{3,4} on behalf of Young AIMN Working Group

First author	Study design	Grade of glioma	Image analysis	Semiquantita- tive param- eters	MRI/other imaging modal- ity parameters	Main findings
Postema et al. [24]	Prospective	IV	Visual, semi- quantitative	T/B ratio, SUVmax, relative uptake score (RUS)	N/A	Good imaging properties, acceptable T/B ratios; very promising for assessing the hypoxic fraction
Mapelli et al. [12]	Case report from clinical trial	IV	Visual	N/A	MRI: T1 with and without gadolinium contrast enhancement, T2 and FLAIR sequences, dynamic susceptibility contrast (DSC) and dynamic contrast- enhanced (DCE) perfu-	¹⁸ F-FAZA PET/ CT can identify tumor areas with the highest grade thus accurately guiding stereo- tactic biopsy ¹⁸ F-FAZA PET/ CT could be used for dose painting with dose escala- tion on the most hypoxic tumor regions
Mapelli et al. [22]	Case report from clinical trial	IV	Visual, semi- quantitative	T/M ratio	MRI: T1 with and without gadolinium contrast enhancement, T2 and FLAIR sequences	¹⁸ F-FAZA PET/CT can guide proce- dures such as ste- reotactic biopsy, by providing specific informa- tion on the most representative tumor areas to be sampled

18F-FAZA Glioma

Review

IJBM

The International Journal of Biological Markers

18F-FAZA PET imaging in tumor hypoxia: A focus on high-grade glioma

Paola Mapelli^{1,2} and Maria Picchio^{1,2}

Date received: 5 November 2019; revised: 13 January 2020; accepted: 17 January 2020

Mapelli P, et al. Clin and Transl Imaging, 2017

Project FAZA-glioma FAZA-PET vs IHC

IHC score system:

0=0-25% 1=25-50% 2=50-75% 3=75-100%

Project FAZA-glioma Correlation FAZA-Hystopathology

Surgical subgroup (n=7)

	SUVmax	SUVmean40	SUVmean50	SUVmean60	MTV40-50-60	HV 1.2-1.3-1.4
CA-IX	p=0.0002	p=0.0058	p=0.009	p=0.0153	P=0.0424	p=0.0058
HIF-1 a	ns	ns	ns	ns	ns	ns
GUT1	ns	ns	ns	ns	ns	ns
Ki-67	ns	ns	ns	ns	ns	ns
CD31	ns	ns	ns	ns	ns	ns

Biopsy subgroup (n=10)

	SUVmax SUVmean40 SUVmean50 SUVmean60 MTV40-50-60				HV 1.2-1.3-1.4	
CA-IX	ns	ns	ns	ns	ns	ns
HIF-1 a	ns	ns	ns	ns	ns	ns
GUT1	ns	ns	ns	ns	ns	ns
Ki-67	ns	ns	ns	ns	ns	ns
CD31	p=0.0094	p=0.0107	p=0.0094	p=0.0154	ns	ns

Project FAZA-glioma FAZA-PET/MR for RT Planning

Mapelli P, et al. Clin Nucl Med. 2017

Project FAZA-glioma FAZA-PET/MR for Treatment Response

Mapelli P, et al. Clin Nucl Med. 2017

Project FAZA-glioma FAZA-PET/MR spatial concordance

Figure 1. Distances between the centers of mass of 18F-FAZA, PWI and dMRI for each slice in the tumor ROI.

Thus, the feasibility of deriving a combined map was exploited, by using the clustering method described in Task 1.2 (see below). The result is showed in Figure 2, where using as input the dMRI ADC, DCE-Vp and 18F-FAZA parametric maps, eight possible habitats intra-tumoral were obtained by thresholding each image using the Otsu algorithm. The enhancing tumor comprised only four of the possible eight clusters. The following spatial mapping was obtained by an Figure 2 - HYPERDIrect map, combining multimodality 18F-FAZA PET, PWI and dMRI parametric maps

Hypoxia PET Imaging in Glioma Conclusion

- Valuable tool for guiding stereotactic biopsy in highgrade glioma patients
- Potential role to plan RT tratement planning (radiation boost)
- Support discrimination between pseudoprogression and radionecrosis

Hypoxia PET Imaging **Conclusion and Perspectives**

Imaging Biomarkers are essential for clinical development of Hypoxia-targeting treatment

• Although still necessary validation/standardisation of hypoxia Imaging to establish final clinical role

Same Prescription

Thank you